Do get-out-the-vote interventions really increase turnout inequality?

A conceptual and empirical reassessment

Francisco Tomas-Valiente¹, Asli Ceren Cinar², Florian Foos³ and Peter John⁴ January 5, 2025

¹ETH Zurich, tomasf@ethz.ch

²London School of Economics, a.cinar@lse.ac.uk

³London School of Economics, f.foos@lse.ac.uk

⁴King's College London, peter.john@kcl.ac.uk

Motivation: Turnout inequality

Turnout inequality is pervasive in Western democracies: Across multiple dimensions, disadvantaged groups vote less.

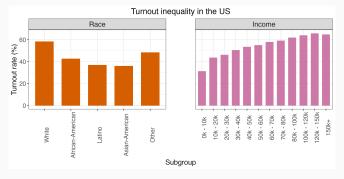


Figure 1: Turnout inequality (pooled ANES data; validated turnout)

This can affect party support and a range of political and policy outcomes.

GOTV and turnout inequality

Get-Out-The-Vote (GOTV) interventions aim to increase electoral participation. They are a cornerstone of modern campaigning and the most studied randomized interventions across political science (Gerber and Green 2000; Green and Gerber 2018; Jacobson 2015)

However, GOTV interventions can also affect the **composition** of the electorate (Foos and John 2017):

- Pooling multiple experiments, Enos, Fowler and Vavreck (2014) find that GOTV campaigns are more effective on high-propensity voters (see also: Niven, 2001, 2004; Gerber, Green and Larimer, 2008; Abrajano and Panagopoulos, 2011; Malhotra et al., 2011).
- EFV and other scholars of campaigns and research ethics have interpreted this finding to mean that GOTV increases turnout inequality (Jacobson, 2015; McDermott and Hatemi 2020; Bryan, Tipton and Yeager 2021)

This paper

Differential mobilization and **increasing turnout inequality** are conceptually and empirically different:

- Differential mobilization: heterogeneity in GOTV effects by voting propensity
- Increasing turnout inequality: high-voting-propensity citizens would be over-represented under GOTV intervention compared to non-intervention
- Need to compare turnout inequality in a world where GOTV happened to turnout inequality in a world where GOTV didn't happen (luckily the control group is a random sample of this counterfactual world).

Imagine the following counterfactual, given a GOTV intervention with a constant ITT of 6pp:

Voting	Control share	Control	Control share	Treatment	Treated share
propensity	of citizens	turnout	of voters	turnout	of voters
0%-20%	50%	10%	16.67%	16%	22.22%
20%-40%	20%	30%	20%	36%	20%
40%-60%	15%	50%	25%	56%	23.33%
60%-80%	10%	70%	23.33%	76%	21.11%
80%-100%	5%	90%	15%	96%	13.33%

Two interlinked research questions

- Differential mobilization: Are GOTV interventions more effective on higher voting propensity citizens?
 - Re-analyze 122 experiments and meta-analyze conditional intent-to-treat effects of 256 treatments across voting propensity bins
 - Bigger sample + new methods to relax linearity assumption
 - GOTV works best on intermediate-propensity citizens
- ② Does GOTV increase turnout inequality?
 - Novel gini-based measure of turnout inequality
 - Meta-analyze the effect on turnout gini of 256 GOTV treatments
 - On average, GOTV reduces turnout inequality

Differential mobilization

Data collection

- Compile a large database of around 400 GOTV field experiments
- 2 Match them with individual-level data from replication archives
- 3 Contact 68 authors to ask for additional replication datasets
- 4 Output: individual-level data of 122 experiments (256 treatments)

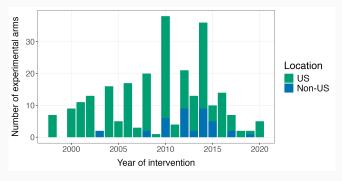


Figure 2: Descriptives: Sample composition across time and space

000000

- Separately for each experiment, use logistic regression to predict turnout in control group on the basis of socio-demographic covariates and past voting.
- 2 Separately for each experiment, predict probability of voting for all individuals. Classify individuals into 5 bins by fixed intervals.
- Stimate conditional ITTs for each bin-treatment.
- Meta-analyze conditional ITTs by bin, allowing correlation in effect sizes.

Results: Differential mobilization

GOTV is most effective on citizens with intermediate voting propensities.

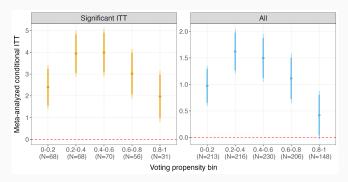


Figure 3: Main results: conditional ITT across bins

Results: Mechanisms behind differential mobilization

Contact rate monotonically increases with bin. LATE is lowest in top bins.

Intermediate-propensity citizens lie at sweet spot for mobilization.

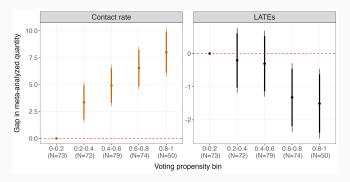


Figure 4: Contact rates and CACEs across bins

The pattern of hump-shaped effectiveness only holds in the US

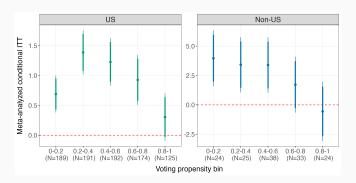


Figure 5: Conditional ITT by voting propensity bins in US vs non-US interventions

00000

Turnout inequality

Conceptualizing and measuring turnout inequality

- What do these results imply for turnout inequality?
- To answer, we need a measure of turnout inequality, to identify the effect of GOTV on it
- We conceptualize turnout inequality as the over-representation of high-propensity citizens among a population of eligible voters.
- Our turnout gini compares the distribution of voting propensities for actual voters vs for voting-eligible citizens.

Back to our example

Turnout inequality

0000000

Figure 6: Turnout gini under a hypothetical intervention with an effect of 6pp

Implications of our inequality measure

Against common assumptions, we simulate that:

- 1 Interventions with constant effects typically decrease inequality
- Interventions can decrease inequality even if they are more effective on high-propensity citizens
 Example
- The same intervention can have opposite effects on inequality depending on the distribution of citizens' voting probability ► Example

The relationship between differential mobilization and turnout inequality can be counter-intuitive.

Results: GOTV reduces inequality

- For each treatment (N=256), we implement the procedure above.
- We then meta-analyze these estimates, gauging uncertainty with bootstrapping.
- On average, GOTV decreases turnout inequality.

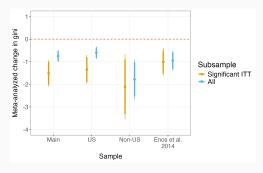


Figure 7: Meta-analyzed changes in turnout gini induced by GOTV

Additional results on turnout inequality

- GOTV reduces inequality more outside the US
- GOTV reduces inequality more where inequality was higher in first place
- More effective GOTV interventions reduce inequality more: no trade-off between increasing turnout and decreasing inequality
- If anything, GOTV reduces racial disparities in the electorate, increasing the share of non-white subjects out of all voters.

▶ Regression table

Differential mobilization

Conclusion

- Questions about differential mobilization and turnout inequality are fundamentally different.
- We conduct the largest individual-data meta-analysis ever in GOTV research, pooling evidence from 122 experiments with 256 treatments.
- Relaxing linearity assumptions, we show that GOTV campaigns are most effective on citizens with intermediate voting propensities. These citizens lie at a sweet spot for mobilization.
- Using a novel measure of inequality, we show that GOTV actually **reduces turnout inequality**, against widespread assumptions.

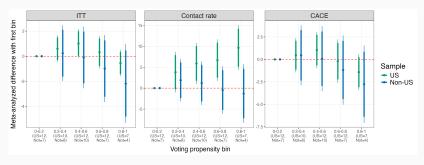
Thank you!

Contact me at: f.foos@lse.ac.uk

Appendix

Additional results

Bigger gaps between bins for interventions with larger effects
 Details


Turnout inequality

- No changes over time in the gaps between propensity bins Petails
- No difference in results for high- vs low-salience elections
- GOTV is similarly effective on white vs non-white citizens Details
- GOTV is similarly effective on men and woman Petails
- GOTV most effective on those aged 55-75, with hump-shaped effectiveness

▶ Robustness checks

Additional results: US vs non-US interventions

This is partly because contact is more structured by voting propensity in the US than elsewhere

Figure 8: Contact rate and CACE by voting propensity bins in US vs non-US interventions

Differential mobilization by ITT

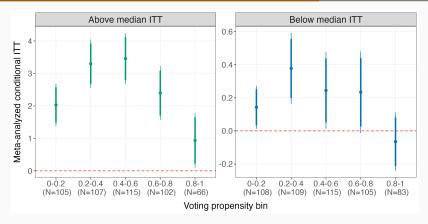


Figure 9: Conditional ITT by average effectiveness (ITT)

Differential mobilization by time of intervention

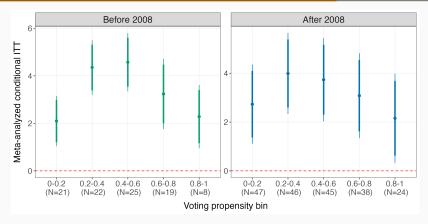


Figure 10: Conditional ITT by time of intervention

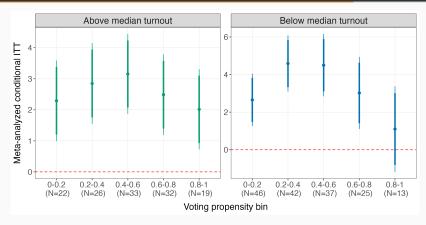


Figure 11: Conditional ITT by election salience (proxied by control turnout)

Differential mobilization

Differential mobilization by race and gender

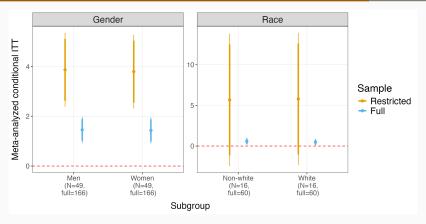


Figure 12: Conditional ITT by race and gender group

Differential mobilization by age

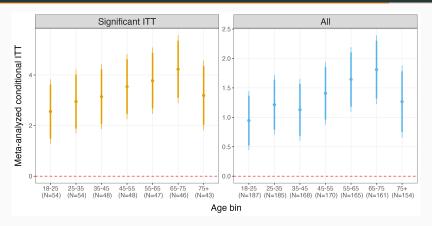


Figure 13: Conditional ITT by age group

Robustness checks

- Fixed effects meta-analysis
- Limit sample to studies with subjects in all bins
- Jackknife individual studies
- Bin by quintiles rather than fixed intervals
- Bootstrap over the entire process (including generation of the voting propensities)
- Generate voting propensities using lasso
- Generating voting propensities on half the control

Differential mobilization vs inequality reduction

Intervention 1: gini decreases from 0.401 to 0.423

Intervention 2: gini increases from 0.401 to 0.437

Voting	Proportion of	Control:	Intervention 1:	Intervention 2:	Int
propensity	eligible citizens	Turnout rate	ITTs	ITTs	
0-0.2	50%	10%	2%	0%	
0.2-0.4	20%	30%	2.5%	0%	
0.4-0.6	15%	50%	3%	5%	
0.6-0.8	10%	70%	3.5%	5%	
0.8-1	5%	90%	4%	5%	

Table 1: Inequality under three alternative hypothetical interventions

Appendix

Inequality effect depends on propensity distribution

Scenario 1: gini decreases from 0.145 to 0.131.

Scenario 2: gini increases from 0.257 to 0.262.

Voting	Scenario 1:	Scenario 1: Control:		Intervention:
	Proportion of	Proportion of	Turnout rate	conditional
propensity	eligible citizens	eligible citizens	Turnout rate	ITTs
0-0.2	1%	24%	10%	0%
0.2-0.4	1%	24%	30%	1%
0.4-0.6	49%	49%	50%	3%
0.6-0.8	24%	1%	70%	1%
0.8-1	24%	1%	90%	0%

Table 2: Inequality under two alternative hypothetical citizen distributions

Additional results on turnout inequality

		Dependen	t variable:		
Change in turnout gini (0-100)					
(1)	(2)	(3)	(4)	(5)	(6)
0.542 (0.829)	1.500* (0.860)	0.969* (0.589)	0.884** (0.421)	1.05** (0.431)	0.663* (0.353)
-1.131 (1.071)	-0.641 (0.956)	-0.487 (0.600)	-0.068 (0.381)	-0.0.136 (0.379)	-0.350 (0.290)
-0.324 (0.792)	0.503 (0.786)	-0.268 (0.521)	-0.322 (0.327)	-0.257 (0.325)	-0.485* (0.249)
	0.038** (0.017)	0.016 (0.011)		0.011 (0.007)	-0.003 (0.006)
		-0.396*** (0.058)			-0.320*** (0.038)
		-0.056*** (0.013)			-0.034*** (0.009)
Restricted 79	Restricted 79	Restricted 79	Extended 252	Extended 252	Extended 252
	0.542 (0.829) -1.131 (1.071) -0.324 (0.792)	0.542	(1) (2) (3) (3) 0.542 1.500* 0.969* (0.829) (0.860) (0.599) -1.131 -0.641 -0.487 (1.071) (0.956) (0.600) -0.324 0.503 -0.268 (0.792) (0.786) (0.521) 0.038** 0.016 (0.017) (0.011) -0.396*** (0.058) -0.056*** (0.013) Restricted Restricted Restricted	Change in turnout gini (0-100) (1) (2) (3) (4) (0.542 1.500* 0.969* 0.884** (0.829) (0.860) (0.589) (0.421) -1.131 -0.641 -0.487 -0.068 (1.071) (0.956) (0.600) (0.381) -0.324 0.503 -0.268 -0.322 (0.792) (0.786) (0.521) (0.327) 0.038** 0.016 (0.017) (0.011) -0.396*** (0.058) -0.056*** (0.013) Restricted Restricted Restricted Extended	(1) (2) (3) (4) (5) 0.542 1.500* 0.969* 0.884** 1.05** (0.829) (0.860) (0.589) (0.421) (0.431) -1.131 -0.641 -0.487 -0.068 -0.0.136 (1.071) (0.956) (0.600) (0.381) (0.379) -0.324 0.503 -0.268 -0.322 -0.257 (0.792) (0.786) (0.521) (0.327) (0.325) 0.038** 0.016 0.011 (0.017) (0.011) (0.007) -0.396*** (0.058) -0.056*** (0.013) Restricted Restricted Restricted Extended Extended

Table 3: Regression analysis of the contexts where GOTV increases or decreases turnout inequality

